تحقیق درمورد برانگیختگی و محدودیتها

دانلود پایان نامه

پروتئینها پس از برانگیختگی در طول موج nm 280 (مربوط به همگی فلوروفورهای پروتئین) یا nm 295 (بیشتر مربوط به باقیماندههای تریپتوفان)، به طور معمول نور را بین طول موج nm 300 و nm 350 منتشر میکنند. شدت فلورسانس در واقع جمع نور منتشر شده توسط هر کدام از باقیماندههای فلوروفور پروتئین میباشد. باز شدن نسبی ساختار پروتئین باعث افزایش برهمکنش باقیماندههای آمینواسیدی پروتئین با حلال (به طور معمول آب) میشود. همچنین ممکن است حلقه اندولی تریپتوفان با دیگر آمینواسیدهای موجود در ساختار پروتئین وارد برهمکنش شود. هر دوی این پدیدهها سبب کاهش شدت فلورسانس و گاهی سبب ایجاد یک شیفت قرمز در پیک نشر فلورسانس (کاهش λMax) میشود که این پدیده را نشانهای از باز شدن پروتئین در محیط آبی میدانند (Bekhouche et al., 2011).
با ورود مایعات یونی به محیط پروتئینها به عنوان حلالهای جدید، مشکلاتی در بررسی ساختار توسط روشهای مختلف ایجاد میشود. از جمله این مشکلات تداخلهای ایجاد شده در طیفهای CD و فلورسانس را میتوان نام برد که در گزارشات مختلفی به آنها اشاره شده است (Shu et al., 2011, Bekhouche et al., 2011, Attri and Venkatesu, 2013). با این وجود شاید بتوان ساختار پروتئین را بیشتر بر اساس شیفتهای λMax و مقایسه شدت فلورسانس در حالتهای دمادهی مختلف در یک مایع یونی با غلظت مشخص، مورد بررسی قرار داد.
به طور کلی میتوان گفت که طیف وسیعی از آنزیمها میتوانند مخلوطهای آبی مایعات یونی را به عنوان محیط واکنش تحمل کنند. به سختی میتوان مایع یونی را یافت که هیچ آنزیمی نتواند با آن سازگار باشد. عقیده بر این است که مایعات یونی در غلظتهای بالاتری، نسبت به حلالهای ملکولی قابل امتزاج با آب، میتوانند توسط آنزیمها تحمل شوند.
بسیاری از هیدرولازها به خصوص آنهایی که توانایی تحمل حلالهای ملکولی را دارند به میزان قابل توجهی میتوانند واکنشهای غیرهیدرولازی را در مایعات یونی کاتالیز کنند. میزان فعالیت آنزیمها در مایعات یونی در حد فعالیت آنها در حلالهای آلی و یا حتی بالاتر نیز میباشد. به علاوه در بسیاری از موارد افزایش پایداری دمایی و عملکردی و افزایش اختصاصیت انانتیو و ریجیو نیز دیده شده است.
مایعات یونی سازگار با آنزیمها به طور معمول برهمکنش قوی با آنزیم نمیدهند و باعث حل شدن آنزیم نمیشوند. تاکنون اساس نظری برای پیشبینی سازگار بودن یا نبودن مایع یونی با آنزیم ایجاد نشده است هرچند با توجه به علاقه زیادی که در این موضوع وجود دارد انتظار میرود که به زودی یک اساس نظری در این زمینه مطرح گردد.
مایعات یونی قابلیت بالایی در کاربرد به عنوان حلال در واکنشهای بیوترانسفورماسیون مربوط به واکنشدهندههای بسیار قطبی مانند پلیساکاریدها دارند؛ زیرا چنین واکنشهایی به دلیل محدودیتهای تعادل واکنش در آب قابل انجام نیستند. چنین جایگزینی یک محیط فرار با محیط غیرفرار مایعات یونی بدون شک ادامه خواهد یافت و به تدریج توسط صنایع شیمیایی پذیرفته خواهد شد و سهم بزرگی در ایجاد کارآیی بالای واکنشهای مختلف خواهد داشت. توسعه مایعات یونی ارزانتر نیز باعث افزایش استفاده از آنها در بیوترانسفورماسیونهای صنعتی خواهد شد. به علاوه باید این موضوع را در نظر داشت که سیستمهای حلالی که بر پایه مایعات یونی هستند قابلیت بالایی در انجام ترانسفورماسیونهای چند کاتالیزوری دارند. برای دستیابی به این اهداف تلاشهای جدیدی انجام گرفته است.
بدون شک انتظار میرود که مایعات یونی سبز و زیست سازگار به زودی در دسترس باشند؛ زیرا به کارگیری مایعات یونی در ایجاد صنایع شیمیایی سبزتر، امری کاملا ضروری است. اینگونه به نظر میرسد که انجام بیوترانسفورماسیون در مایعات یونی بسیار امید بخش است.
فصل دوم
مروری بر پژوهشهای پیشین
2-1- پیشینه کاربرد مایعات یونی در بیوکاتالیز
اولین گزارش از بیوکاتالیز در محیط مایعات یونی مربوط به سال 2000 است (Cull et al., 2000). اولین کارهای انجام شده در این زمینه شامل مایعات یونی متشکل از کاتیونهای 1و3- دی آلکیل ایمیدازولیوم یا N- آلکیل پیریدینیوم و یک آنیون ضعیف کئوردینه کننده بود (شکل2-1و جدول 2-1). این نوع مایعات یونی هنوز نقش اصلی را در واکنشهای آنزیمی ایفا میکنند. هرچند که تحقیقات در حال حاضر بیشتر به سمت مایعات یونی با ساختارهای جدید گرایش یافته است. تاکنون مقالات مروری خوبی در زمینه بیوکاتالیز در مایعات یونی منتشر شده است که از آن جمله مقاله مروری ون رنتویجک و شلدون و مقالات مروری منیرالزمان را میتوان نام برد (Van Rantwijk and Sheldon, 2007, Moniruzzaman, 2010 a& b).
شکل2-1- ساختارهای نمونه از کاتیون مایعات یونی که به طور مرسوم در بیوکاتالیز استفاده میشوند
(Van Rantwijk and Sheldon, 2007).
جدول2-1- آنیونهای متداول در مایعات یونی
فرمول ساختاری
علامت اختصاری
نام آنیون
BF4-
BF4-
Tetrafluoroborate
PF6-
PF6-
Hexafluorophosphate
(CF3SO2)2N-
Tf2N
Bis(trifluoromethylsulfonyl)amide
CF3SO3-