تحقیق درمورد محیط زیست و فعال بودن

دانلود پایان نامه

C. rugosa
C. tropicalis
C. antarctica
لیپازها را میتوان براساس اختصاصیت به سه گروه تقسیم کرد (Mukherjee et al., 1994). لیپازهای غیر اختصاصی ملکولهای آسیل گلیسرول را در موقعیتهای تصادفی میشکنند و اسیدچرب آزاد و گلیسرول و منوآسیل گلیسرول و دیآسیلگلیسرول را به عنوان حدواسطهای واکنش ایجاد میکنند. محصولات این واکنش مشابه محصولات واکنش انجام شده توسط کاتالیزورهای شیمیایی است. در واکنش آنزیمی محصول در اثر دما کمتر تجزیه میشود و این به دلیل پایینتر بودن دمای واکنش در کاتالیز زیستی است. لیپازهای اختصاصی به موقعیتهای 1و3، آزادسازی اسیدچرب از موقعیتهای 1و3 اسکلت گلیسرولی را کاتالیز میکنند. لیپازهای دارای اسیدچرب اختصاصی، تنها یک اسیدچرب خاص از ملکول آسیل گلیسرول آزاد میکنند (Macrae et al., 1983). لیپازها همچنین تفکیک انانتیومری ترکیبات کایرال و واکنشهای استریفیکاسیون، ترانساستریفیکاسیون، و اینتراستریفیکاسیون را کاتالیز میکنند. این تواناییهای متنوع کاتالیز، در شکست چربیها، اصلاح چربیها و روغنها، سنتز ترکیبات آلی، تأمین شویندهها و روشهای تجزیهای، کاربرد بسیاری پیدا کرده است (Macrae et al., 1985).
1-2-1- ارتباط ساختار آنزیم لیپاز با عملکرد آن
این خصوصیت لیپازها که در سطح بین فضای آبدوست و آبگریز عمل میکنند، وجه تمایز لیپازها از استرازها میباشد (Cleasby et al., 1992). وزن ملکولی آنزیمهای لیپاز در محدوده 20000 تا 60000 دالتون میباشد. این آنزیمها نیز شبیه سرینپروتئازها دارای مجموعه سه تایی کاتالیتیک باقیمانده نوکلئوفیل- باقیمانده هیستیدین- باقیمانده اسیدی هستند (شکل1-1) که به صورت مجموعه سرین- هیستیدین- آسپارتات یا به صورت مجموعه سه تایی سرین- هیستیدین- گلوتامات میباشد (Noble et al., 1993).
جایگاه فعال بهطور معمول در درون ملکول دفن شده است که توسط باقیماندههای آبگریز احاطه میشود. یک ساختار مارپیچ پلیپپتیدی همانند یک درپوش مانع از قرارگیری جایگاه فعال و سوبسترا در دسترس حلال میشود. همچنین محافظت از آنزیم در برابر فعالیت پروتئازها ممکن است با ممانعت از عملکرد مجموعه سه تایی کاتالیتیک پروتئاز ایجاد شود (Brady et al., 1990). سمتی از درپوش که روبروی جایگاه فعال است بیشتر از زنجیرههای جانبی آبگریز آلیفاتیک تشکیل شده است و در سمت مقابل، سطح آبدوست است که به سمت بیرون قرار گرفته است.
تغییر جهتگیری ساختار α- هلیکس درپوش همراه با افزایش آبگریزی سطوح نزدیک جایگاه فعال و روبروی آن، باعث پدیده “فعال شدن در فضای بینابینی” میشود. باز شدن درپوش ممکن است با برخورد آنزیم به مرز روغن/ آب آغاز شود (Cleasby et al., 1992). در مورد سوبستراهای آبگریز، اتصال زنجیرههای آلیفاتیک سوبسترا به سطح آبدوست آنزیم، به ویژه در حضور یک لایه آبپوشی، بسیار نامطلوب است. فضای بینابینی ایجاد شده در دهانه شیار فعال ممکن است به فراهم سازی یک لایه ناکامل آبپوشی در اطراف ملکول لیپاز و در نتیجه تسهیل پیچش زنجیرههای آلیفاتیک ملکول سوبسترا در سطح آنزیم کمک کند (Petersen et al., 1996). پایدارسازی بیشتر میتواند به کمک محدودههای الکتروستاتیک موضعی در سطح آنزیم و با ایجاد جاذبه دوقطبی به سمت پیوند C-H (با قطبیت ضعیف) زنجیرههای جانبی آلیفاتیک فراهم شود.
شکل 1-1- آنزیم لیپاز ریزوموکور میهی (PDB entry 3TGL).
آمینواسیدهای اصلی جایگاه فعال با رنگ قرمز نشان داده شدهاند: Ser144، Asp203و His257.
1-3- آنزیمها در محیط آلی
کلیبانو با انجام تعدادی آزمایش ابتدایی و ساده نشان داد که میتوان از آنزیمها در حلالهای آلی آبگریز استفاده کرد(Zaks and Klibanov, 1985, Klibanov et al., 1986) ، هرچند که در چنین محیطهایی سرعت واکنش به شدت پایین میآید (Klibanov et al., 1997). به مرور مشخص شد که بسیاری از لیپازها و همچنین برخی از پروتئازها و آسیلازها بسیار پایدار هستند، به طوری که حتی در حلالهای آلی بدونآب نیز فعالیت خود را حفظ میکنند. این خصوصیت اساس استفاده موفقیتآمیز از این آنزیمهای هیدرولاز در واکنشهای غیرهیدرولازی است. از جمله این واکنشهای غیرهیدرولازی میتوان آسیلاسیون الکلها و آمینها با اختصاصیت انانتیومری را نام برد که در صنعت کاربرد زیادی دارند) (Schmidt et al., 2001.
تداخل محیط آلی، که شامل مایعات یونی نیز میشود، با فعالیت آنزیم غالبا از جنبه حذف آب ضروری آنزیم مورد بررسی قرار میگیرد. بسیاری از آنزیمها برای فعال بودن به یک پوشش آبی کامل نیاز دارند، اما تعداد زیادی استثناء نیز وجود دارد مانند لیپاز B کاندیدا آنتراکتیکا (CALB) که فعالیت خود را حتی پس از خشک شدن با پنتوکسید فسفر حفظ میکند (De Goede et al., 1993) و پروتئاز سوبتیسیلین که برای فعال ماندن تنها نیاز به تعداد اندکی ملکول آب با اتصال محکم به ملکول آنزیم دارد (Dolman et al., 1997). بررسی منابع علمی نشان میدهد که بیان نیاز آنزیم به آب در قالب فعالیت آبی (aW ) مرسومتر از بیان آن بر اساس غلظت آب است. حضور مقدار کم آب هنگام انجام واکنشهای غیرهیدرولازی با آنزیمهای لیپاز یا پروتئاز ممکن است باعث حفظ یا افزایش فعالیت آنزیمی شود. هرچند چنین محیطهایی همیشه باعث افزایش واکنشهای جانبی هیدرولازی میشوند. همچنین اسید حاصل از این واکنشها ممکن است باعث کاهش pH و از دست رفتن فعالیت آنزیمی شود.
حلالهایی که به خوبی توسط این آنزیمها تحمل میشوند – هیدروکربنهای آروماتیک و آلیفاتیک، اترها، و الکلها (بجز متانول)- فقط به صورت ضعیفی با آنزیم برهمکنش میدهند و میتوان حدس زد که این حلالها کم و بیش فقط برای آنزیم یک فضای خالی ایجاد میکنند. تنها الکلها که تشکیل دهنده پیوند هیدروژنی هستند میتوانند لیپازها را غیرفعال کنند. حلالهایی که برهمکنش بسیار قوی با پروتئینها میدهند، مانند دی متیل سولفوکسید (DMSO) و دی متیل فرمآمید (DMF) نیز باعث غیرفعال شدن برگشتناپذیر آنزیمها میشوند. بنابراین آنزیمها برهمکنشهای قوی با هیچ مادهای به جز آب را نمیتوانند تحمل کنند (Van Rantwijk, 2007).
نامشخص بودن pH در محیط بدون آب یک عامل پیچیده در آنزیمشناسی است. آنزیم توزیع بار الکتریکی (pH ظاهری) را مطابق با آخرین محلول آبی، مثلا بافر لیوفیلیز، حفظ میکند (Zaks and Klibanov 1985). البته pH بهینه ظاهری تحت تأثیر نوع حلال و aW تغییر میکند (Yang et al., 1993). چنین اثرات مشابهی در محیط مایعات یونی نیز قابل انتظار است.
در حقیقت بیشترین اطلاعات درباره رفتار آنزیم در محیط غیرآبی، حاصل از مطالعات آنزیمها در حلالهای آلی است. اما حلال های آلی برای طبیعت زیان آور هستند بنابراین در سالهای اخیر تلاش زیادی در جهت یافتن جایگزین پاکتری برای محیطهای واکنش انجام شده است.از جمله محلولهای دوستدار محیط زیست مایعات یونی را میتوان نام برد که میتوانند جایگزین حلالهای آلی شوند.
علاقه عمومی برای افزایش سرعت واکنشهای آنزیمی در حلالهای آلی نیز عامل پیشبرنده دیگر به سمت مایعات یونی بوده است. یکی از دلایل کاهش فعالیت آنزیمی در حلالآلی (در مقایسه با محیط آبی) پایدارسازی مواد واکنش دهنده در حلال است (Klibanov et al., 1997). این اثر که در واقع همان افزایش حلالیت (افزایش Km) است، با به کارگیری غلظتهای بالاتری از ماده واکنشدهنده قابل جبران است (Halling et al., 2004). بقیه کاهش فعالیت، در حد 1 تا 2 برابر، مربوط به اثر مجموعهای از عوامل شامل ناپایدار شدن حالت گذار واکنش (Clark et al., 2004)، تغییرات کنفورماسیون و از دست دادن انعطافپذیری میباشد (Halling et al., 2004, Clark et al., 2004 ). ثابت دیالکتریک پایین محیطهای آلی معمولی باعث افزایش انرژی حالت گذار شدیدا قطبیده در مقایسه با آب میشود و بنابراین ناپایدار شدن حالت گذار را در پی خواهد داشت (Clark et al., 2004).
1-4- مایعات یونی
از میان مایعات مختلفی که میتوان بهعنوان حلال به کار برد تنها تعداد اندکی به طور عمومی مورد استفاده قرار میگیرند. با معرفی تکنولوژیهای سبز یک نگرانی اصلی، ایجاد جایگزینهای مناسب برای حلالهای مخرب است که در صدر جدول مواد شیمیایی زیانآور هستند. زیرا این حلالها در مقادیر بالا استفاده میشوند و به طور معمول مایعات فراری هستند. نمکهای مرکب مایعاتی هستند که فقط یون دارند (مایعات یونی). در صورت انتخاب مواد اولیه مناسب میتوان مایعات یونی ساخت که در دمای اتاق و در دمای پایینتر از دمای اتاق مایع هستند. مایعات یونی مواد جدیدی نیستند. بسیاری از آنها سالهای زیادی است که شناخته شدهاند. برای مثال میتوان [EtNH3][NO3] را نام برد که دمای ذوب 12 درجه سانتیگراد دارد و در سال 1914 معرفی شد. از همان زمان پیشنهاد شد که از مایعات یونی در سنتز شیمیایی به جای حلال استفاده شود. البته تنها در سالهای اخیر تعداد زیادی مقالات در این زمینه به چاپ رسیده است. برخی خصوصیات فیزیکی ساده مایعات یونی که آنها را به عنوان حلالهای بالقوه برای سنتز جالب توجه کرده است توسط ولتون بیان گردیده است (Welton et al., 1999):
حلالهای خوبی برای طیف وسیعی از مواد آلی و غیر آلی هستند.
معمولا شامل یونهای نامتناسبی هستند که امکان قطبیت بالا در آنها را ایجاد میکند.
طبق مقیاس قطبیت نرمال شده که در آن تترامتیل سیلان صفر و آب 0/1 در نظر گرفته شده، قطبیت مایعات یونی مرسوم، به طور معمول در محدوده 6/0-7/0 قرار میگیرد ( مانند فرمامید و الکلهای محلول در آب )
(van Rantwijk et al., 2003). همچنین کاهش طول زنجیره آلکیلی متصل به حلقه ایمیدازولیوم و اندازه آنیون در مایعات یونی دارای کاتیون ایمیدازولیومی، با افزایش قطبیت مایع یونی در ارتباط است (Carmichael and Seddon, 2000). مقدار قطبیت مایع یونی گاهی به دما و حضور آب حساس است (Baker et al., 2002). مایعات یونی به دلیل قطبیت بالایی که دارند محیط خوبی برای واکنشهای شیمیایی و بیوشیمیایی ایجاد میکنند. زیرا میتوانند سوبستراهای مختلفی شامل ترکیبات آلی قطبی و غیرقطبی و ترکیبات آلی و غیر آلی و پلیمری را در خود حل کنند.
با تعدادی از حلالهای آلی غیر قابل امتزاج هستند و بنابراین یک جایگزین قطبی غیرآبی برای سیستمهای دو فازی میباشند. همچنین مایعات یونی آبگریز را میتوان به عنوان فاز قطبی غیر قابل امتزاج همراه با آب استفاده کرد (Welton et al., 1999).
مایعات یونی فرار نیستند و این به دلیل یونی بودن ماهیت آنها است که فشار بخار ناچیزی دارند. بنابراین میتوان از آنها بدون ایجاد آلودگی در سیستمهایی با مکش قوی استفاده کرد (Welton et al., 1999).
بنابراین مایعات یونی دارای پایداری دمایی بوده و فاقد فشار بخار میباشند (Gordon et al., 2001, Brennecke et al., 2001). به علاوه داری خصوصیات استثنائی به عنوان حلال هستند و میتوانند هر ماده شیمیایی را در خود حل کنند. با جایگزین کردن کاتیون، آنیون و اجزای متصل به آنها، میتوان خصوصیات این حلالها را تغییر داد و به این صورت مایع یونی مناسب برای واکنش خاصی را ایجاد نمود (Brennecke and Maginn, 2001) (شکل 1-3). گرچه هنوز مشخص نیست که مایع یونی چگونه خصوصیات کاتالایتیک آنزیم را تحت تأثیر قرار میدهد، آنزیمها در مایعات یونی مانند [C4MIM][PF6] فعال و به شدت پایدار هستند (Erbeldinger et al., 2000, Cull et al., 2000, Laszlo et al., 2001).
شکل 1-2- آنیونها و کاتیونهای مرسوم در مایعات یونی مورد استفاده در بیوکاتالیز.