منبع مقاله با موضوع ذخیره سازی و برانگیختگی

دانلود پایان نامه

بسیاری از آنزیمها به خوبی در طیف وسیعی از مایعات یونی در محیط آبی عمل میکنند. به سختی میتوان مایع یونی پیدا کرد که به هیچ عنوان با هیچ آنزیمی سازگاری نداشته باشد. در رابطه با پیشبینی سازگاری آنزیم و مایعات یونی آبی به نظر میرسد که کائوتروپی و کاسموتروپی نمیتوانند به عنوان تنها عوامل پیشبینی کننده استفاده شوند. همچنین بعید به نظر میرسد که بتوان سازگاری آنزیم با مایعات یونی را با در نظر گرفتن تعداد محدودی پارامتر همچون قطبیت یا logP تفسیر نمود. این موضوع در مورد حلالهای ملکولی محلول در آب نیز صدق میکند (Van Rantwijk et al., 2007).
اساس پیشبینی سازگاری آنزیمها و مایعات یونی آبی را میتوان این گونه بیان کرد که پروتئین زمانی پایداری خود را از دست میدهد که یونها یا ملکول های حلال اطراف آن با فرم بازشده آنزیم برهمکنش قویتری نسبت به فرم طبیعی آنزیم داشته باشند (Baldwin et al.,1996). چنین برهمکنشهای ناپایدارکنندهای میتوانند حاصل از “Salting in” یونهای دوگانه دوست روی گروههای آبگریز فرو رفته درون ساختار پروتئین یا حاصل از برهمکنشهای قوی آنها با پیوندهای پپتیدی باشد (Kaar et al., 2003, Lou et al., 2006). از جمله مباحث مهمتری که باید به خصوص در مورد آنزیمهای حساس مد نظر قرار داد میتوان تغییرات pH ایجاد شده توسط یونهای اسیدی یا قلیایی برونشتد و فعالیت آبی ترمودینامیکی را نام برد.
1-5-2- فعالیت آنزیمها در شرایط نسبتا بیآب در مایعات یونی
توانایی لیپاز در تحمل مایعات یونی به صورت بیآب یک توانایی عمومی نیست. آنزیم CALB (Schofer et al., 2001) و CRL (Kaar et al., 2003) در طیف وسیعی از مایعات یونی امتزاجپذیر با آب، حاوی آنیونهای MeSO4- (Schofer et al., 2001)، NO3- (Kaar et al., 2003)، AcO-یا lactate- (Sheldon et al., 2002) غیرفعال است. نکته قابل توجه این است که لیپاز در چنین محیطهایی حل میشود زیرا حل شدن پروتئین مستلزم شکسته شدن برهمکنشهای پروتئین- پروتئین و تشکیل اینترکشنهای قویتر با محیط است (شکل 1-4). آب نیز چنین عملکردی دارد؛ اما حلالهای آلی مانند N،N- دیمتیل فرمامید و دیمتیل سولفوکسید که آنزیمها را در خود حل میکنند و در ضمن، گروههای سطح پروتئین را کئوردینه میکنند، عوامل دناتوره کننده قوی محسوب میشوند.
به نظر میرسد که مایعات یونی بدون آب با روشی مشابه حلالهای آلی مرسوم، آنزیم را تحت تأثیر قرار میدهند؛ زیرا بسیاری از آنها به خوبی تحمل میشوند اما برخی از آنها نیز سازگاری بسیار کمی دارند که البته این موضوع به نوع آنزیم نیز بسیار وابسته است. برای مثال مایعات یونی حاوی یونهای AcO- و NO3- که به صورت مخلوطهای آبی سازگاری بسیار خوبی دارند، در حالت بدون آب آنزیم بسیار مقاوم CALB را غیر فعال میکنند. بر اساس اطلاعات فعلی، مایعات یونی با آنیونهای BF4- و PF6-، و آنیون مقاوم به هیدرولیز NTf2- و آنیونهای زنجیر متوسط آلکیل سولفات به همراه کاتیونهای دیآلکیلایمیدازولیوم و آلکیلپیریدینیوم گزینههای ایمنتری به نظر میرسند (Van Rantwijk and Sheldon 2007).
تاکنون یک اساس نظری برای پیشبینی سازگاری آنزیمها و مایعات یونی بیآب ایجاد نشده است. هرچند تعدادی از عوامل سهیم احتمالی مانند قابلیت کاتیون برای ایجاد پیوند هیدروژنی (Park and Kazlauskas, 2001)، log P (Kaar et al., 2003)، تشکیل نانوساختارهای متصل به هیدروژن، و گرانروی حلال (Lozano et al., 2005) مورد بحث قرار گرفتهاند. براساس شواهد موجود به نظر میرسد که میزان هسته دوستی آنیون (Kaar et al., 2003) یا قابلیت پذیرش پیوند هیدروژنی توسط آن (Sheldon et al., 2002) نیز، حداقل در حالتی که میل کاتیون برای تشکیل پیوند هیدروژنی کم است، میتواند یکی از عوامل کنترل کننده باشد. در این مورد یک استثناء وجود دارد و آن در مورد آنیون H2PO4- است که بدون دناتوره کردن میتواند Cyt C را در خود به صورت کامل حل کند (Fujita et al. 2005). استثناء دیگر [HOPMIM][glycolate] است که با داشتن کاتیون و آنیونی با قابلیت بالا در ایجاد پیوند هیدروژنی، آنزیمهای احیاکننده را در فرم فعال در خود حل میکند (Walker and Bruce, 2004).
شکل 1-3- آنزیم CALB در حضور مایعات یونی بدون آب. الف) شکل شماتیک از نحوه برهمکنش مایع یونی با بخشهای باردار و غیرقطبی آنزیم، ب) ساختار شبیه سازی شده آنزیم CALB در محیط مایع یونی DCGUA-NO3؛
رنگ زرد مناطقی از سطح آنزیم را نشان میدهد که زنجیرههای آلیفاتیک حضور دارند و رنگ نارنجی نشان دهنده مناطق باردار سطح آنزیم هستند (Klahn et al., 2011).
1-5-3- پایداری آنزیمها در مایعات یونی تقریبا بیآب
پایداری (دمایی) آنزیمها (فعالیت در طی زمان) معمولا در محیطهای آلی به خصوص با فعالیت آبی کم، نسبت به محیطهای آبی، بهتر است (Zaks and klibanov, 1984). مایعات یونی نیز میتوانند چنین اثری داشته باشند. پایداری آنزیمی تعریف واضحی ندارد و روشهای متنوعی برای سنجش آن وجود دارد. برای بررسی پایداری در ذخیره سازی، آنزیم در مایع یونی در یک دمای خاص انکوبه شده و میزان فعالیت باقیمانده در نمونهها که با آب رقیق شدهاند بررسی میشود. بازیابی فعالیت بالایی از آنزیم در چنین روشی نشان دهنده این است که تغییرات ایجاد شده در ساختار آنزیم در این چنین محیط ذخیرهسازی برگشت پذیر است. پایداری آنزیم را میتوان با انکوبه کردن آنزیم در مایع یونی در بازههای زمانی مختلف و سنجش فعالیت در همان محیط بررسی نمود. همچنین میتوان ساختار آنزیم را با روشهای اسپکتروسکوپی در محیط مورد نظر بررسی نمود. برای مثال دمای بازشدن ساختار پروتئین شیرین مونولین از C° 40 در آب به C° 105 در [C4MPr][NTf2] افزایش یافت (Baker et al., 2004). نوع دیگر پایداری که میتوان مورد بررسی قرار داد پایداری در شرایط واکنش است.
بهطور کلی آنزیمها در مایعات یونی فعالیت و ساختار خود را در مدت زمان طولانیتر و در دماهای بالاتری نسبت به حلالهای آلی ملکولی حفظ میکنند. دلیل احتمالی این امر گرانروی بالای مایعات یونی است که باعث کند شدن حرکت دمینهای پروتئین از موقعیت خود در فرم فعال پروتئین به موقعیتهای جدید ایجاد کننده فرم غیرفعال میشود (Van Rantwijk and Sheldon, 2007).
1-5-4- آنزیمها، مایعات یونی، پیوندهای هیدروژنی و فعالیت
پیوندهای هیدروژنی عامل پیوستگی ساختار آنزیمهای آبپوشی شده و بدون آب هستند. هر تغییر ساختاری مستلزم فروپاشی تعداد قابل توجهی از پیوندهای هیدروژنی به طور همزمان میباشد؛ این امر سهم قابل توجهی در پایداری آنزیم دارد و گویای اثرات حافظه آبپوشی و اثرات پسماند است (Halling, 2004). منظور از اثرات پسماند این است که تعداد ملکولهای آب متصل به آنزیم تنها وابسته به میزان فعالیت آبی نیست، بلکه به حافظه آبپوشی نیز مربوط میباشد.
پژوهشهای مختلفی نشان داده اند حلالهایی که در شرایط آبی یا غیرآبی با آنزیم سازگارند، مانند استونیتریل یا ترت- بوتیل الکل، در غلظتهای پایین باعث غیرفعال شدن آنزیم میشوند (Griebenow et al., 1996). چنین نتایجی را میتوان در پژوهشهای انجام شده در مایعات یونی نیز مشاهده کرد. دلیل این امر کاهش اثر آبگریزی در حضور حلال است. در نتیجه پایداری آنزیم کاهش مییابد تا اینکه در یک غلظت مشخص آنزیم غیرفعال میشود.
پیوندهای هیدروژنی میتوانند توضیح مناسبی برای پایداری آنزیم در مایعات یونی بدون آب باشند. مایعات یونی، بهخصوص آنیون آنها که پیوندهای هیدروژنی قوی ایجاد میکنند، ممکن است باعث از بین رفتن پیوندهای هیدروژنی شوند که عامل یکپارچگی ساختار α- هلیکسها و صفحات β بودهاند و بنابراین باعث باز شدن کل پروتئین یا بخشی از آن شوند. برای مثال یون لاکتات به راحتی میتواند با اسکلت پلیپپتیدی پیوند هیدروژنی برقرار کند. اندازه یون نیز میتواند مهم باشد زیرا یونهای با اندازه بزرگ برای ایجاد تعداد اندکی پیوند هیدروژنی بین خود و آنزیم، نیاز دارند که تعداد زیادی پیوند هیدروژنی را بشکنند، بنابراین نمیتوانند به سادگی پایداری آنزیم را مختل کنند. در آنزیمهایی که به صورت برگشتپذیر غیرفعال شدهاند احتمالا پیوندهای هیدروژنی توانستهاند کانفورماسیون را حفظ کنند و در ادامه برای بازیابی ساختار آنزیم لازم است این پیوندها فروپاشند و پیوندهای طبیعی دوباره ایجاد شوند. رقیق کردن عوامل دناتوره کننده، مانند مایع یونی دناتوره کننده، میتواند باعث تشکیل دوباره پیوندها شود احتمالا چنین ترکیباتی که پیوند هیدروژنی قوی تشکیل میدهند با تشکیل پیوندهای هیدروژنی ناپایدار، تشکیل دوباره پیوندها را تسهیل میکنند.
1-5-5- بیوترانسفورماسیون در محیط مایعات یونی توسط لیپازها و استرازها
کاربرد لیپازها در بیوترانسفورماسیون شامل طیف وسیعی از واکنشهای سالوولایتیک( نوعی از واکنشهای جانشینی هستند که در آنها حلال به عنوان نوکلئوفیل عمل کرده و جانشین یک اتم یا گروه در ملکول سوبسترا میشود) مربوط به گروه کربوکسیل است (McNaught and Wilkinson, 1997). از جمله این واکنشها میتوان استریفیکاسیون، ترانساستریفیکاسیون (الکلولیز)، پرهیدرولیز، و آمینولیز (سنتز آمید) را نام برد (Schmidt and Verger, 1998). واکنشهای ترانساستریفیکاسیون و سنتز آمید ترجیحا در محیط بیآب و در حضور زئولیت فعال، جهت متوقف ساختن واکنشهای هیدرولازی ناخواسته، انجام میشود. در این واکنشها اغلب از آنزیمهایی همچون CALB (Anderson et al., 1998, Kirk and Christensen, 2002)، PSL و PCL استفاده میشود (Bornscheuer and Kazlauskas, 1999) که به راحتی چنین شرایطی را تحمل میکنند.
جهت دستیابی به بهینهترین حالت تشخیص انانتیومرها لازم است که محیط واکنش، مایع یونی یا محیطهای سنتی، با توجه به نوع ماده واکنش دهنده و نوع آنزیم بهینهسازی شود. در واقع نمیتوان یک مایع یونی را به عنوان بهترین گزینه برای انجام واکنشهای تفکیک مخلوطهای راسمیک نام برد، همانطور که یک حلال آلی را نمیتوان به طور کلی بهترین دانست. با ظهور مایعات یونی، گزینههای حلال انتخابی و بنابراین شانس یافتن محیط مناسب به میزان زیادی افزایش یافته است.
1-6- بررسی ساختار پروتئین به روش اسپکتروسکوپی فلورسانس
ملکول پروتئین طی فرآیندهای غیرفعال شدن چند فاز مختلف را طی میکند. این پدیده نشاندهنده یک سری وقایع درون ملکولی در کنفورماسیونهای گذرای پروتئین است (De Diego et al., 2004). از روشهای مختلفی جهت بررسی ساختار پروتئین استفاده میشود که از آن جمله میتوان روشهای DSC ، NMR، CD، FTIR، اسپکتروفتومتری UV، کریستالوگرافی اشعه X و اسپکتروسکوپی فلورسانس را نام برد. فلورسانس یک روش در دسترس است که میتوان از آن جهت بررسی ساختار سوم پروتئین استفاده کرد.
در پروتئینهایی که دارای آمینواسیدهای فلوروفور هستند (مثل تریپتوفان، تیروزین یا فنیلآلانین) تغییر در IMax فلورسانس و شیفت قرمز در λMax فرآیند دناتوره شدن پروتئین را نشان میدهند و هر دوی این تغییرات به دلیل افزایش قطبیت باقیماندههای تریپتوفان پروتئین با قرارگیری آن در معرض حلال است. مکانیسم ملکولی پایدار شدن آنزیم در مایعات یونی (در بیوکاتالیز کاربردی) همچنان نامعلوم است و نیاز به بررسیهای بیشتر وجود دارد (De Diego et al., 2004).
پروتئینها پس از برانگیختگی در طول موج nm 280 (مربوط به همگی فلوروفورهای پروتئین) یا nm 295 (بیشتر مربوط به باقیماندههای تریپتوفان)، به طور معمول نور را بین طول موج nm 300 و nm 350 منتشر میکنند. شدت فلورسانس در واقع جمع نور منتشر شده توسط هر کدام از باقیماندههای فلوروفور پروتئین میباشد. باز شدن نسبی ساختار پروتئین باعث افزایش برهمکنش باقیماندههای آمینواسیدی پروتئین با حلال (به طور معمول آب) میشود. همچنین ممکن است حلقه اندولی تریپتوفان با دیگر آمینواسیدهای موجود در ساختار پروتئین وارد برهمکنش شود. هر دوی این پدیدهها سبب کاهش شدت فلورسانس و گاهی سبب ایجاد یک شیفت قرمز در پیک نشر فلورسانس (کاهش λMax) میشود که این پدیده را نشانهای از باز شدن پروتئین در محیط آبی میدانند (Bekhouche et al., 2011).
با ورود مایعات یونی به محیط پروتئینها به عنوان حلالهای جدید، مشکلاتی در بررسی ساختار توسط روشهای مختلف ایجاد میشود. از جمله این مشکلات تداخلهای ایجاد شده در طیفهای CD و فلورسانس را میتوان نام برد که در گزارشات مختلفی به آنها اشاره شده است (Shu et al., 2011, Bekhouche et al., 2011, Attri and Venkatesu, 2013). با این وجود شاید بتوان ساختار پروتئین را بیشتر بر اساس شیفتهای λMax و مقایسه شدت فلورسانس در حالتهای دمادهی مختلف در یک مایع یونی با غلظت مشخص، مورد بررسی قرار داد.