منبع مقاله با موضوع محیط طبیعی و محیط زیست

دانلود پایان نامه

1-3- آنزیمها در محیط آلی
کلیبانو با انجام تعدادی آزمایش ابتدایی و ساده نشان داد که میتوان از آنزیمها در حلالهای آلی آبگریز استفاده کرد(Zaks and Klibanov, 1985, Klibanov et al., 1986) ، هرچند که در چنین محیطهایی سرعت واکنش به شدت پایین میآید (Klibanov et al., 1997). به مرور مشخص شد که بسیاری از لیپازها و همچنین برخی از پروتئازها و آسیلازها بسیار پایدار هستند، به طوری که حتی در حلالهای آلی بدونآب نیز فعالیت خود را حفظ میکنند. این خصوصیت اساس استفاده موفقیتآمیز از این آنزیمهای هیدرولاز در واکنشهای غیرهیدرولازی است. از جمله این واکنشهای غیرهیدرولازی میتوان آسیلاسیون الکلها و آمینها با اختصاصیت انانتیومری را نام برد که در صنعت کاربرد زیادی دارند) (Schmidt et al., 2001.
تداخل محیط آلی، که شامل مایعات یونی نیز میشود، با فعالیت آنزیم غالبا از جنبه حذف آب ضروری آنزیم مورد بررسی قرار میگیرد. بسیاری از آنزیمها برای فعال بودن به یک پوشش آبی کامل نیاز دارند، اما تعداد زیادی استثناء نیز وجود دارد مانند لیپاز B کاندیدا آنتراکتیکا (CALB) که فعالیت خود را حتی پس از خشک شدن با پنتوکسید فسفر حفظ میکند (De Goede et al., 1993) و پروتئاز سوبتیسیلین که برای فعال ماندن تنها نیاز به تعداد اندکی ملکول آب با اتصال محکم به ملکول آنزیم دارد (Dolman et al., 1997). بررسی منابع علمی نشان میدهد که بیان نیاز آنزیم به آب در قالب فعالیت آبی (aW ) مرسومتر از بیان آن بر اساس غلظت آب است. حضور مقدار کم آب هنگام انجام واکنشهای غیرهیدرولازی با آنزیمهای لیپاز یا پروتئاز ممکن است باعث حفظ یا افزایش فعالیت آنزیمی شود. هرچند چنین محیطهایی همیشه باعث افزایش واکنشهای جانبی هیدرولازی میشوند. همچنین اسید حاصل از این واکنشها ممکن است باعث کاهش pH و از دست رفتن فعالیت آنزیمی شود.
حلالهایی که به خوبی توسط این آنزیمها تحمل میشوند – هیدروکربنهای آروماتیک و آلیفاتیک، اترها، و الکلها (بجز متانول)- فقط به صورت ضعیفی با آنزیم برهمکنش میدهند و میتوان حدس زد که این حلالها کم و بیش فقط برای آنزیم یک فضای خالی ایجاد میکنند. تنها الکلها که تشکیل دهنده پیوند هیدروژنی هستند میتوانند لیپازها را غیرفعال کنند. حلالهایی که برهمکنش بسیار قوی با پروتئینها میدهند، مانند دی متیل سولفوکسید (DMSO) و دی متیل فرمآمید (DMF) نیز باعث غیرفعال شدن برگشتناپذیر آنزیمها میشوند. بنابراین آنزیمها برهمکنشهای قوی با هیچ مادهای به جز آب را نمیتوانند تحمل کنند (Van Rantwijk, 2007).
نامشخص بودن pH در محیط بدون آب یک عامل پیچیده در آنزیمشناسی است. آنزیم توزیع بار الکتریکی (pH ظاهری) را مطابق با آخرین محلول آبی، مثلا بافر لیوفیلیز، حفظ میکند (Zaks and Klibanov 1985). البته pH بهینه ظاهری تحت تأثیر نوع حلال و aW تغییر میکند (Yang et al., 1993). چنین اثرات مشابهی در محیط مایعات یونی نیز قابل انتظار است.
در حقیقت بیشترین اطلاعات درباره رفتار آنزیم در محیط غیرآبی، حاصل از مطالعات آنزیمها در حلالهای آلی است. اما حلال های آلی برای طبیعت زیان آور هستند بنابراین در سالهای اخیر تلاش زیادی در جهت یافتن جایگزین پاکتری برای محیطهای واکنش انجام شده است.از جمله محلولهای دوستدار محیط زیست مایعات یونی را میتوان نام برد که میتوانند جایگزین حلالهای آلی شوند.
علاقه عمومی برای افزایش سرعت واکنشهای آنزیمی در حلالهای آلی نیز عامل پیشبرنده دیگر به سمت مایعات یونی بوده است. یکی از دلایل کاهش فعالیت آنزیمی در حلالآلی (در مقایسه با محیط آبی) پایدارسازی مواد واکنش دهنده در حلال است (Klibanov et al., 1997). این اثر که در واقع همان افزایش حلالیت (افزایش Km) است، با به کارگیری غلظتهای بالاتری از ماده واکنشدهنده قابل جبران است (Halling et al., 2004). بقیه کاهش فعالیت، در حد 1 تا 2 برابر، مربوط به اثر مجموعهای از عوامل شامل ناپایدار شدن حالت گذار واکنش (Clark et al., 2004)، تغییرات کنفورماسیون و از دست دادن انعطافپذیری میباشد (Halling et al., 2004, Clark et al., 2004 ). ثابت دیالکتریک پایین محیطهای آلی معمولی باعث افزایش انرژی حالت گذار شدیدا قطبیده در مقایسه با آب میشود و بنابراین ناپایدار شدن حالت گذار را در پی خواهد داشت (Clark et al., 2004).
1-4- مایعات یونی
از میان مایعات مختلفی که میتوان بهعنوان حلال به کار برد تنها تعداد اندکی به طور عمومی مورد استفاده قرار میگیرند. با معرفی تکنولوژیهای سبز یک نگرانی اصلی، ایجاد جایگزینهای مناسب برای حلالهای مخرب است که در صدر جدول مواد شیمیایی زیانآور هستند. زیرا این حلالها در مقادیر بالا استفاده میشوند و به طور معمول مایعات فراری هستند. نمکهای مرکب مایعاتی هستند که فقط یون دارند (مایعات یونی). در صورت انتخاب مواد اولیه مناسب میتوان مایعات یونی ساخت که در دمای اتاق و در دمای پایینتر از دمای اتاق مایع هستند. مایعات یونی مواد جدیدی نیستند. بسیاری از آنها سالهای زیادی است که شناخته شدهاند. برای مثال میتوان [EtNH3][NO3] را نام برد که دمای ذوب 12 درجه سانتیگراد دارد و در سال 1914 معرفی شد. از همان زمان پیشنهاد شد که از مایعات یونی در سنتز شیمیایی به جای حلال استفاده شود. البته تنها در سالهای اخیر تعداد زیادی مقالات در این زمینه به چاپ رسیده است. برخی خصوصیات فیزیکی ساده مایعات یونی که آنها را به عنوان حلالهای بالقوه برای سنتز جالب توجه کرده است توسط ولتون بیان گردیده است (Welton et al., 1999):
حلالهای خوبی برای طیف وسیعی از مواد آلی و غیر آلی هستند.
معمولا شامل یونهای نامتناسبی هستند که امکان قطبیت بالا در آنها را ایجاد میکند.
طبق مقیاس قطبیت نرمال شده که در آن تترامتیل سیلان صفر و آب 0/1 در نظر گرفته شده، قطبیت مایعات یونی مرسوم، به طور معمول در محدوده 6/0-7/0 قرار میگیرد ( مانند فرمامید و الکلهای محلول در آب )
(van Rantwijk et al., 2003). همچنین کاهش طول زنجیره آلکیلی متصل به حلقه ایمیدازولیوم و اندازه آنیون در مایعات یونی دارای کاتیون ایمیدازولیومی، با افزایش قطبیت مایع یونی در ارتباط است (Carmichael and Seddon, 2000). مقدار قطبیت مایع یونی گاهی به دما و حضور آب حساس است (Baker et al., 2002). مایعات یونی به دلیل قطبیت بالایی که دارند محیط خوبی برای واکنشهای شیمیایی و بیوشیمیایی ایجاد میکنند. زیرا میتوانند سوبستراهای مختلفی شامل ترکیبات آلی قطبی و غیرقطبی و ترکیبات آلی و غیر آلی و پلیمری را در خود حل کنند.
با تعدادی از حلالهای آلی غیر قابل امتزاج هستند و بنابراین یک جایگزین قطبی غیرآبی برای سیستمهای دو فازی میباشند. همچنین مایعات یونی آبگریز را میتوان به عنوان فاز قطبی غیر قابل امتزاج همراه با آب استفاده کرد (Welton et al., 1999).
مایعات یونی فرار نیستند و این به دلیل یونی بودن ماهیت آنها است که فشار بخار ناچیزی دارند. بنابراین میتوان از آنها بدون ایجاد آلودگی در سیستمهایی با مکش قوی استفاده کرد (Welton et al., 1999).
بنابراین مایعات یونی دارای پایداری دمایی بوده و فاقد فشار بخار میباشند (Gordon et al., 2001, Brennecke et al., 2001). به علاوه داری خصوصیات استثنائی به عنوان حلال هستند و میتوانند هر ماده شیمیایی را در خود حل کنند. با جایگزین کردن کاتیون، آنیون و اجزای متصل به آنها، میتوان خصوصیات این حلالها را تغییر داد و به این صورت مایع یونی مناسب برای واکنش خاصی را ایجاد نمود (Brennecke and Maginn, 2001) (شکل 1-3). گرچه هنوز مشخص نیست که مایع یونی چگونه خصوصیات کاتالایتیک آنزیم را تحت تأثیر قرار میدهد، آنزیمها در مایعات یونی مانند [C4MIM][PF6] فعال و به شدت پایدار هستند (Erbeldinger et al., 2000, Cull et al., 2000, Laszlo et al., 2001).
شکل 1-2- آنیونها و کاتیونهای مرسوم در مایعات یونی مورد استفاده در بیوکاتالیز.
1-5- بیوکاتالیز در مایعات یونی
دلیل تمایل به انجام بیوکاتالیز در مایعات یونی در واقع میل به جایگزین کردن مایعات یونی غیرفرار به جای حلالهای آلی فرار بوده است. هرچند این واکنشها در محیط طبیعی آنزیم یعنی محیط آبی قابل انجام است اما حلالهای آلی به طور وسیعی همراه با آنزیمها مورد استفاده قرار گرفتهاند تا از این طریق میزان حلالیت واکنشگرهای آبگریز را بیشتر کرده و تعادل واکنش را از سمت هیدرولیز به سمت سنتز تغییر جهت دهند. همچنین خصوصیات غیرمرسوم مایعات یونی به عنوان حلال، باعث گسترش روشهای متعدد جدید و بسیار کارآ شده است (Van Rantwijk et al., 2007).
1-5-1- آنزیمها در مخلوطهای مایع یونی- آب
در بیوترانسفورماسیون غالبا از مخلوط محیط آلی- آبی برای افزایش حلالیت واکنشدهندهها و محصولات آبگریز استفاده میشود. پایداری و فعالیت آنزیمها در مخلوطهای آبی مایعات یونی غالبا براساس اثرات هافمیستر مورد بررسی قرار میگیرد. سری هافمیستر نوعی دستهبندی یونها است که به ترتیب توانایی آنها در حل کردن و رسوبدهی پروتئینها ایجاد شده است.
اخیرا در حوزه بیوکاتالیز در مخلوطهای مایع یونی- آب کارهای زیادی در رابطه با طیف وسیعی از آنزیمها و مایعات یونی انجام شده است. مایعات یونی را به خوبی میتوان براساس موقعیت قرارگیری یونها، در سری هافمیستر به گونهای مرتب نمود که ترتیبی از پایدارکنندهترین تا ناپایدارکنندهترین (کاسموتروپ تا کائوتروپ) ایجاد شود.
نمک های سری هافمیستر با ویژگی های کاسموتروپیک و کائوتروپیک یونها مرتبط هستند. یونهایی که به شدت آب پوشی میشوند به کاسموتروپ ها معروفند و آن دسته از یون هایی که به صورت ضعیف هیدراته می شوند، کائوتروپ خوانده می شوند (Lo Nostro et al., 2005). یونهای حاصل از نمکهای سری هافمیستر به دو گروه تقسیم می شوند: Salting- out و Salting- in (Kunz et al., 2004). یون های out-Salting (آنیون های کاسموتروپ مثل فسفات، سولفات وکاتیون های کائوتروپیک مثل کاتیون های آمونیوم) پروتئین ها را پایدارکرده و نیز باعث رسوب آنها می شوند. در مقابل یون های Salting- in (آنیونهای کائوتروپ مثل آنیون های پرکلرات، برماید و کاتیونهای کاسموتروپ مثل کاتیون لیتیم) پروتئین ها را ناپایدار میکنند (Kunz et al., 2004). درغلظت های پایین نمک (تا سقف 01/0 مولار) یون ها غالبا از طریق برهمکنش های الکترواستاتیک روی آنزیم ها تاثیر می گذارند. هنگامی که در غلظت های زیاد نمک نیروهای انتشار یا پراکندگی یونی بر پتانسیل الکترواستاتیک پیروز میشوند، اثر یونهای هافمیستری اهمیت پیدا میکنند (Lo Nostro et al., 2005).